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Abstract. The exact propagator of  our dynamic system is derived for a rational wedge. For 
an irrational wedge, the proposed propagator can be confirmed by expanding it in terms 
of eigenfunctions and eigenvalues, which agree with those obtained from the corresponding 
Schrcdinger equation. Our results are also valid for an inverse square potential interacting 
with a wedge. Finally we investigate the classical path's contributions to the propagator 
for the free particle and the rational wedge case. 

1. Introduction 

Recently, the ZD dynamical systems interacting with a wedge have been studied quantum 
mechanically. On the one hand, Crandall [l] and DeWitt-Morette er al [ 2 ]  evaluate 
the propagator for a free particle interacting with a rational wedge. On the other hand, 
Schulman [ 3 ]  and Wiegel and van Andel [4] obtain, respectively, the exact propagator 
for a free particle and for a harmonic oscillator, both interacting with an infinite 
half-plane barrier. Their results have been generalized [ 5 ]  by Cheng ( a )  by including 
a harmonic potential and ( b )  by extending to an irrational wedge [6]. 

In this paper, we first derive the propagator for a rational wedge case in section 2. 

the energy eigenfunctions and eigenvalues, respectively, in section 3. For comparison, 
we solve the corresponding Schrodinger equation and show that the propagator in 
section 3 is correct in section 4. In section 5, we discuss the classical path's contributions 
to the propagator for the free particle interacting with a rational wedge in general and 
with a half-plane barrier in particular. 

For a!! irrationa! wedge case, we propose the propapator from which we then obtain 

2. Path integral evaluations 

For purposes to be explained later, we first consider the dynamical system of the 
following Lagrangian: 

/ U \  q D ( x j - X y )  _-  g 
L( r, r )  = \ s ) [ ( x ' + y ' )  - - o i r i ] +  2 r r 2  r 2  

where q and are the charge and the mass of the particle. Here we have assumed (i) 
a harmonic potential with the same angular frequence w in x and y directions, (ii) an 
inverse square potential with strength g> 0, (iii) a vector potential of a long solenoid 
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of zero size at the origin and containing the magnetic flux (€I [ll]. Therefore the charged 
particle moves in a ZD multiplyconnected space with the origin removed. Evaluating 
the path integral with the Lagrangian (1) we recently obtained the propagator in polar 
coordinates as [7-111 
K(r“ ,  rp”, f ;  r’, rp’;f)  

= [ Zhr i  sin(ot) 
] exp[ipo(r’2+ r”2) cot(wr)/2fi] 

m 

x ,=-m 1 exp[-i(l+f)(rp”-rp’)](-‘ I )  J *  /qA,l( I h por’r” sin(wt) ) (2) 

with A~=[(I+f)2+Zpg/h2] .  JiA,l( .) is the Bessel function andf=  q@/Z?rhc is the flux 
quantum number of the solenoid. 

the external angle of wedge is am (0< a S 2 ) ,  (iii) the harmonic potential is centred 
at the origin (see figure 1) and (iv) the inverse square potential is of the form g/r2 
(g>O). However, we assume a = n?r/m is rational ( n  and m are positive integers), in 
this section. Now we have to evaluate the path integral on an n-sheeted Riemann 
surface since the paths during the time interval of f must loop a multiple of n times 

the top (or physical) sheet. Using the linear combinations of the propagator (2) with 
o = 0 and with different values of f  (a multiple of l / n ) ,  DeWitt-Morette et al [2] are 
able to obtain a free propagator on an n-sheeted Riemann surface. Extending their 
result, we arrive at 

K,(r”, rp“, f ;  r’, a’) 

For our dyiiar,ica: jyaiem we ajjiime thzt (i) th$ wedge i j  a:ofig :he z-axis, (G j  

?a ga from the initin! pasitinn ( r ’ ,  9’) ta the fin.! pnsitinn ( r ” ,  q”), which are bnth OI! 

= A  [ exp[ipm(r’2+r”2) cot(ot)/2h] 
n 2 h r i  sin(ot) i 

h sin(ot) 

m 
x I: (exp[-i~(q~‘-rp’)/n])(-i)’”~~~i~,~ 

I = - -  
(3) 

Figure 1. The edge of the wedge is the z-axis. The harmonic plus inverse square potential 
is centred at the origin of the (I ,  q )  plane. The path C represents one of the paths from 
the initial position (r‘, q ’ )  to the final position ( r ” ,  q“) during the time interval of 1. 
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where Y:= (1*/n2+2pg/fi2), which is the propagator of a ZD inverse square oscillator 
on an n-sheeted Riemann surface. 

By considering the contributions from the source (particle) and its images reflecting 
with respect to the wedge surfaces, we can satisfy the boundary conditions we need 
on the surfaces of the wedge. However, the image which achieves the proper boundary 
conditions on one surface will disturb the boundary conditions on the other. Therefore, 
we should add all images of these images until the set of images closes on itself. 
Following the analysis of Dewitt-Morette et a/ [2], the even (odd) images obtained 
from the source by even (odd) number of reflections stand at rp = p‘+Zakn/m (rp = 
-p’+2akn/m) for k as integer. There are 2m integers (including the source) in total 
on an n-sheeted Riemann surface. 

In order to satisfy the Dirichlet boundary conditions in quantum mechanics, the 
propagator must vanish on the surfaces of the wedge, and it can be obtained by 
summing the probability amplitude of the even and odd image with opposite phase 
since they contribute the same strength of probability amplitude to the final position 
of the particle. We then have 

KJr’’, d’, 1;  r‘, 9’) 

where ~ ~ = [ ( m l / n ) ~ + 2 p g / f i * ]  for the propagator of the ZD inverse square oscillator 
interacting with a rational wedge. 

3. Exact propagator for the irrational wedge case 

We observe [6] that the propagator (4) can only be generalized for the irrational wedge 
case by replacing the factor n/m by a. Therefore, we propose the propagator as 

--- KYfr ’ ’ ,  > e”, I ;  r‘, 9’) 

x exp(-iot) [ I  -exp(-2iwt)]-l { 

11 exp( - i d )  
I-exp(-2iwt) 

x I,,,( r’r” 
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Using the identities [12] 
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2( cdu)'12 14 1-U 

let u=exp(-2iwt), c = , ~ w r ' ~ / h ,  d=pwrrr2/h,  a = p I  and q=n,, in (7), equation (6) 
then becomes 

K:(r", cp", f ;  r', cp') 

x sin(lcp"/a) sin( lcp'/a) ,F,  

(9) fi 

Comparing with the expression of the propagator in terms of the energy eigenvalues 
and eigenfunctions, we have 

E,,,=hw(l*l+l+2n,) (10) 

(11) +,,,,dr, cp) = cn,,lr*' exp(-pwr2/2h) sin(lcp/a) ,Fl(-nr, W + I ;  w r 2 / h )  

(n ,  = 0, 1, 2 , .  . .), with the normalization constant being 

For the case of w = O  (without the harmonic potential), ( 5 )  reduces to 

K:(r", cp", 1;  r', cp') 

= (k) exp[ip(r'2+ r"2)/2fit] 

m 

x 1 sin(lcp'/a) sin(lcp"/a)l,, 
I I I  

Using the result [12] 
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If we let a = iht/p, p = r ’ / d  and y = r”//JZ, then we have 

.. 
Now ( i 3 j  can be put into the Form 

KO.(r”, ‘p”, t ;  r’, a’) 

x !&’,(kr’).“,(kr”) d‘ 

Therefore we get the energy eigenfunctions as 

(IS) 

1/2 

$l,E(r. P, t ) =  (3) sidb/a)J,&) exp(-iEt/h). (17) 

Writing the Bessel function as a degernate hypergeometric function (see table 
9.238-1 in [ 1 2 ] ) ,  the exact propagator ( 5 )  reduces to 

K:(r”, q”, t ;  r’, q’) 

[ (r’2+ r”2) 
amifi sin(ot) 2h sin(ot) 

which does belong to the first group of the solvable propagator as classified by Inomata 
[ i j j  as we expect. w e  shouid mention that for the g = 0 case, (i8) has been obtained 
by Cheng [6] and by Chetouani et al [14]. 

4. Schrodinger equation 

4,;. Harre0nic osei;;aior p:iis sqiiere poicniia; 

In polar coordinates, the Schrodinger equation is of the form 

1 P: g1 --[-+--+-- f i 2  az 1 a i a’ + ( r , r p ) +  - r  +;i $ ( r , q ) = E $ ( r , q ) .  
2p ar’ r a r  r 2 a p 2  

The wavefunction must satisfy the following bounday conditons: 

$(r ,  0 )  = $(r ,  a?r) = 0. 

We assume that the wavefunction has the form 

S(r, 10) = N r )  U101 
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substituting (21) into (19), we find 
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Y(q) = sin(lq/a) ( r  = i , 2 , 3 , .  . .) 
in order to satisfy (20), and 

where k2=2pE/h2.  Assuming [15] 

R(r)=r”’  exp(-por2/2h)F(r) p1 = [ ( l / a ) 2 + 2 p g / h 2 ] ” 2  

we have 

Using the variable 5 =  p o r 2 / h ,  (25) reduces to the Kummar equation 

whose solution regular at r = 0 (or 5 = 0) is the degenerate hypergeometric function 

(27) 
hk2 

4 w  
F(por2 /  R )  = , F, f (p I  + 1) --, pl + 1,  pur2/  h 

For large r, F(por2 /h)  would diverge as exp(por2/ h), thus preventing normalization 
of the wavefunction. The wavefunction can only be normalized by choosing 

n , = - - -  (P l+ l )  ( n . = O ,  1,2 , .  . .) (28) 
hk2 1 

4 p o  2 

which gives the energy eigenvalues (IO) as we expect. 
Finally, we obtain the energy eigenfunction as 

h, ,dr,  P)=  C.,,lr~’exp(-~Lor2/2h) sin(lq/a) ,F,(-n,, p l + l ;  por2/h)  

with the normalization constant defined by 

(29) 

C . , , , = [ ( a ~ / 2 )  ~~mr2’li’exp(-pwr2/h) ,F:(-n,,pl+l; p ~ o r ~ / h ) d r ] - ~ ’ ~  (30) 

which has been found as (12) in section 2. 

4.2. Inverse square potential 

In polar coordinates, the Schrodinger equation is of the form 

Again, we have the boundary conditions (20) and thus the angular wavefunction (21). 
However, the radial wavefunction must satisfy the following differential equation: 

r 2 R ” ( r ) + r R ’ ( r ) + [ k 2 r 2 - p : ] R ( r ) = 0  (32) 
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where k2=2pE/h2,  p : = 2 p g / h 2 + ( I / a ) Z .  Now, by using the variable [= kr, (32) 
reduces to 

whose solution regular at r = 0 is the Bessel function, 01 

R ( 6 )  =AJp,(5). 

Therefore, we have the energy eigenfunction as 

(34) 

... :.I. .L̂  ..---,:--A:.- .̂_..._L * - , ~  ,,.2\112 L.. :-- ,.-, c.-.--..L-- .L̂  
W l l l l  L‘lC LL”llllall‘a~,ull CuIlslalll ti = (p,  n I vy L-un,parrrrg [L ’ 1 .  Lunryallrrg LIIL: 

energy eigenvalues and eigenfunctions in sections 2 and 3, we conclude that the 
propagator ( 5 )  is correct. 

5. Classical paths for free particle interacting with the rational wedge 

Unfortunately, the propagator ( 5 )  or (18) cannot be expressed as the sum over ‘classical 
paths’. In order to do so, we restrict ourselves to the case of o = g = 0 (free particle) 
and a = n / m  (rational wedge) and the propagator then reduces to [2, 4,6] 

C d r ’ ’ ,  d’, 2 ;  r’, d )  

-(p‘+ -q ’ )  1 
Hereafter, we use the symbol (p’+ -p’) to represent all the terms inside the curly 
oraanei wiin p buusiiiuieu uy -‘p . i r r  equation [JO), wc 11ave L..., ...... :.L , . . . L . d  ..... JL.. r T- :.-,-<, L .... 

(37) 
P 
21 

Skk(cp”r p‘) =- [(r”’+ r”) -2r’r” cos(p“~p’+2?rkn/m)]  

which will be shown later to be the classical action and the diffractive coefficients 

x exp[iu cos(p”r  q’+2nkn/m)] du (38) 

with z = pr’r”/ ht. 
From now on, we define the ’classical path’ as one uniform motion which starts 

from the initial position of the particle or its images and arrives at the final position 
( r ” ,  p”) of the particle during the time interval 1. Using the cosine law of a triangle, it 
can easily be shown that (37) does represent the classical action on an n-sheeted 
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Riemann surface. As we see, there are Zm classical paths in total. In Cartesian 
coordinates (37) becomes 

s:,(p”r 9’) = E  ~ x ” ~ + y ” ~ +  x’2+y’2+ 2 sin(Z?rkn/ m ) ( x ’ y ” r  x”y’) 

B K Cheng and M G E da Luz 

2t 

- 2  cos(Z?rkn/ m ) ( x ‘ x ” * y ’ y ” ) ]  

and 

with the help of (39) and (40), we rewrite (36) in the following form: 

K%,,(r“, d’, f ;  r’, a’)  

(39) 

(40) 

which .Eti.f;.cS thc YE!! vlcck fcm.!. [!h! Kith the c m z  fzctor 

Fik(p”* a’)  =- [l +DEk(ip”T q’ ) ] .  
m 

(42) 

Physically, the above factor is difficult to interpret even with the diffractive theory 
of Keller [17]. However, we notice that each ‘classical path’ will contribute one 
non-diffractive term and n - 1  diffractive terms to the propagator and the factor 
Fik(p”f a’) can he interpreted as the relative amplitude of the contribution for the 
‘classical path‘. 

In order to evaluate (42) explicitly, we consider the case of n = 2. Substituting 

n 

Jl12(u)  =- sin(u) J-1/2(u) =J27;;;cos(u) (43) 
into (381, we obtain [6]t 

=’( 2 1 - 2 i ( ~ ) ’ i z ~ ~ t [ ( q ’ ‘ ~ i p ’ + 4 1 r k / m ) / 2 ]  

and 

1 3 2pr‘r”sin2[(q“f~’+47rk/m)/2] 
x l F j ( i , j :  iht 
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Finally, we have the propagator [3,61 

K:(r”, p”, t ;  r’, q’) 

(47) 

for the half-barrier case ( m  = 1 and n =2)  [3]. Here we should mention that most of 
the results in this section have already been obtained in [6 ]  for the more general case 
of o # 0. However, up to now we are still not able to show that (21) in [6] does 
represent the classical action due to the complicated classical paths connected the 
initial point and the final point in a harmonic oscillator case. That is the main reason 
why we repeat all the formulae and interpret them correctly for the free particle case. 

Once we determine the initial position of the particle, the configuration space can 
be divided into three different regions for the final position of the particle. As shown 
in figure 2, there exist two real classical paths in region I, one real and one imaginary 
classical path in region I1 and two imaginary classical paths in region I11 (shadow 
region), respectively, Finally, we should remark that once the classical path (real or 
imaginary) reflects from the surfaces of the wedge, its contribution to the propagator 
(35) will change signs or multiply by -1, as we expect. 

Figure 2. The classical paths in different regions. Full lines represent the real classical 
paths and dotted line the imaginary classical paths. 
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